Internal Nucleophilic Displacements within Silanolate Ions. A New Mechanism of Substitution at Silicon

Zakaria H. Aiube,^a Julian Chojnowski,*b Colin Eaborn,*a and Wlodzimierz A. Stańczyk b

^a*School of Chemistry and Molecular Sciences, University of Sussex, Brighton BNI 9QJ, U.K.* **^b***Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Boczna 5, 90-362 todi, Poland*

Unimolecular dissociation of \neg O-(X)Si< species to give X⁻ and O=Si< (which immediately reacts with the solvent) is postulated to account for (a) features of the base-catalysed cleavage of R-Si bonds in solutions of RSiMe₂OMe (R = m -CIC₆H₄CH₂ or PhC=C) in 5% H₂O-MeOH and (b) the rapid conversion of (Me₃Si)₃- $CSIPh(OH)1$ into $(Me_3Si)_3CSIPh(OH)(OMe)$ by methanolic MeONa.

We present evidence for a new mechanism of substitution at silicon. This mechanism has been detected in solvolysis under I B **13,** basic conditions of organosilicon species in which a hydroxygroup is present on the silicon bearing the leaving group **X,** and, as depicted in Scheme 1, involves an internal displacement within **a** silanolate ion to give a silanone, which reacts rapidly with the solvent *(e.g.* MeOH) to give the same product as would be expected for direct nucleophilic displacement of **X.**

We first suspected the existence of this mechanism when we

$$
\begin{array}{ccc}\n & 0 \\
 & 1 \\
R_2Si - X & \xrightarrow{B_{H^+}} R_2Si - X \longrightarrow R_2Si = 0 + X^- \quad (slow)\n\end{array}
$$

 R_2 Si=O + MeOH $\longrightarrow R_2$ Si(OH)(OMe) (rapid)

Scheme 1

Figure 1. Plot of observed first-order rate constant, *k*, against the base concentration for cleavage of m -ClC₆H₄CH₂SiMe₂OMe at 50.0 \degree C in (a) MeOH (squares) and (b) 5 $\text{vol-}\%$ H₂O-MeOH (circles). The curve in case (b) is that generated by equation (1).

measured spectrophotometrically the rate of base-catalysed cleavage of the R-Si bonds of RSiMe,OMe species in MeOH and in 5 vol- $\frac{6}{6}$ H₂O-MeOH. For R = m-ClC₆H₄CH₂ (initially 5×10^{-3} M) in MeOH the dependence of the observed firstorder rate constant, k , at 50.0 $^{\circ}$ C on the base concentration was similar to that observed for cleavage of $RSiMe₃$ species,¹ but in the water-containing medium the dependence was very different, the value of *k* rising sharply with increasing base at low base concentrations and then levelling off (see Figure 1). We were aware that some of the RSiMe₂OMe would be rapidly converted into the silanol $RSiMe₂OH$ and hence into $RSiMe₂$ - O^- in 5% H₂O–MeOH containing base, but expected that the rate of cleavage of the silanol would be rather similar to that of $RSiMe₂OMe$ and that $RSiMe₂O⁻$ would (because of repulsion of the OMe⁻) be relatively inert, so that the observed rate constant would fall off progressively at higher base concentrations as silanolate ion was increasingly formed. Instead it appears that the R-Si bond of the anion $RSiMe₂O⁻$ readily undergoes a rate-determining unimolecular dissociation to $Me₂Si=O$ and R⁻ [which rapidly react with MeOH to give $Me₂Si(OH)(OMe)$ and RH]. The observed rate constant, k , is thus made up of a contribution from this process, dependent upon the concentration of the anion, and another from RSiMe₂OMe, dependent upon the concentration of this species and that of the base. [For simplicity we treat RSiMe₂-**OH,** as far as its direct contribution to the observed rate is concerned, as though it were RSiMe₂OMe, on the basis of the assumptions that relatively little of the silanol is present (say 20% of the amount of RSiMe₂OMe), and that in any case the rate of its direct cleavage will not be very different from that of the methoxide.]

It was shown by u.v. spectroscopy that the related RSiMe₂-OMe with $R = PhCH₂$, which is much less readily cleaved, is *ca.* half converted into RSiMe₂O⁻ in 5% H₂O-MeOH containing 0.40 M NaOMe. (For simplicity we neglect the fact that hydroxide ion must also be present in solutions of NaOMe in $H_2O-MeOH$.) We assumed that for $R = m-CIC_6H_4CH_2$ there would be half conversion at a slightly lower baseconcentration, *viz.* 0.38 **M** (since the chloro-substituent will slightly increase the acidity of the silanol), and calculated the fraction, *r,* of the substrate present as silanolate ion at each base concentration. We estimated the value of the specific rate constant, *ks,*

Figure 2. Plot of observed first order rate constant, *k,* against the base concentration for cleavage of PhC=CSiMe₂OMe at 30.0 °C in (a) MeOH (squares) and (b) 5 vol-% H₂O-MeOH (circles). The curve in case (b) is that generated by equation (2).

for cleavage of the RSiMe₂OMe in 5% H₂O-MeOH (at low base concentrations) as *ca*. 10×10^{-5} l mol⁻¹ s⁻¹ by applying to the value in MeOH the factor of 1.3 observed for this same solvent change with RSiMe₃. Thus we could estimate the contribution, k_{AMe} , to *k* from RSiMe₂OMe, given by $k_{\text{B}}(1-r) \times$ [NaOMe], and so derive the contribution, k_{A-} , due to the silanolate ion.† The first-order rate constant for the decomposition of this ion is then given by k_A -/r, which should be constant if our interpretations are correct, and this was approximately the case, all the values lying in the range 361- 404×10^{-6} s⁻¹ with a mean of 379 \pm 14 (standard deviation) \times 10^{-6} s⁻¹. The curve shown in Figure 1 for the 5% H₂O-MeOH medium is actually that generated by use of equation **(I),** and

$$
10^6 k = 100(1-r)[\text{NaOMe}] + 379r \tag{1}
$$

the fit is very satisfactory in view of the simplifying assumptions made. (At high base concentrations the contribution of the methoxide should level off at ca. 34×10^{-6} s⁻¹ and that of the anion at *ca*. 379×10^{-6} s⁻¹.)

Similar behaviour was observed for the much more readily cleaved RSiMe₂OMe with $R = PhC=C$ (Figure 2) at 30.0 °C, but much lower base concentrations are involved, and to interpret the results it has to be assumed that the $RSiMe₂OMe$ is half converted into $RSiMe₂O⁻$ in 5% H₂O-MeOH containing 0.02 M base. The value of k_s for $RSiMe₂OMe$ in this medium is estimated to be 3.3 1 mol^{-1} s⁻¹ by applying to the value in NaOMe-MeOH the factor of 1.5 which applies in the case of RSiMe,OMe for this change of medium. The mean value of k_{A-}/r then turns out to be 165 \pm 7 (standard deviation) s⁻¹, and the upper curve in Figure 2 is then that generated by equation (2). (The analysis implies that $PhC=CSiMe₂OH$ is

$$
k = 3.3(1-r)[\text{NaOMe}] + 165r \times 10^3 \tag{2}
$$

ca. 20 times as acidic as PhCH,SiMe,OH.) The contributions from the $RSiMe₂OMe$ and $RSiMe₂O⁻$ are more comparable in this case, levelling off at ca. 60×10^{-3} and 165×10^{-3} s⁻¹, respectively, at higher bases concentrations.

~~ ~~ ~

¹⁻ The contribution from RSiMe,OMe can be assumed to be given by k_s $(1-r)$ [NaOMe] even at high base concentrations at which k_s in fact varies; this is because acidity function effects on k_s and $(1-r)$ should approximately cancel out.

While the above experiments were in progress, we observed the operation of the new mechanism in a very different system, involving methanolysis of $(Me_3Si)_3CSiPhRX$ species in which steric hindrance inhibits attack of nucleophiles on silicon **.z** It is known that the methanolyses of $(Me₃Si)₃CSiPhHI$ and the more hindered $(Me_3Si)_3CSiMe_2I$ are not catalysed by NaOMe,^{3,4} and that the latter undergoes solvolysis only very slowly in refluxing $NaOMe-MeOH⁴$ and so we were not surprised to find that $(Me_3Si)_3CSiPh(OMe)I$ did not undergo detectable reaction with 0.5 **M** NaOMe-MeOH in **2** h under reflux. Unexpectedly, however, $(Me_3Si)_3CSiPh(OH)I$ (which did not react with MeOH alone in **24** h under reflux) in 0.17 **^M** solution in 0.25 M NaOMe in MeOH was found to be completely converted into $(Me₃Si)₃CSiPh(OH)(OMe)$ within 5 min at room temperature, as judged by the change in position of the peak for the $(Me₃Si)₃C$ protons in the ¹H n.m.r. spectrum, and subsequent isolation of the product. This abnormal reactivity of the silanol can reasonably be attributed to the mechanism shown in Scheme 1.

Although this mechanism [an S_y1 (cb) process] has not previously been observed or even postulated for silicon, there are close analogues in carbonyl chemistry (where the internal displacement is normally in a rapid step after the rate determining process) and in phosphorus chemistry (see *e.g.,* ref. 5).

We thank the S.E.R.C. for support *(via* C. E.), Dow Corning Ltd., for gifts of organosilicon chemicals, the British Council for a grant to enable W. **A. S.** to spend a period at the University of Sussex, and the Ministry of Higher Education, Iraq, for a scholarship **(Z.** H. A.).

Received, 3Ist January 1983; Corn, I41

References

- *C.* Eaborn and F. M. **S.** Mahmoud, *J. Organomet. Chem.,* 1981, **206,** 49.
- C. Eaborn, *J. Organomet. Chem.,* 1982, **239,** 93 and references therein.
- C. Eaborn and F. M. **S.** Mahmoud, *J. Chem. SOC., Perkin Trans.* 2, 1981, 1309.
- **S.** A. I. Al-Shali, C. Eaborn, and F. M. **S.** Mahmoud, *J. Organomet. Chem.,* 1982, **232,** 215.
- A. **J.** Kirby and **S.** G. Warren, 'The Organic Chemistry of Phosphorus,' Elsevier, Amsterdam, 1967, pp. 284-301.